Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.26.550688

ABSTRACT

SARS-CoV-2 variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22995 and 28866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.


Subject(s)
Seizures , Severe Acute Respiratory Syndrome
2.
Lancet Reg Health West Pac ; : 100767, 2023 Apr 10.
Article in English | MEDLINE | ID: covidwho-2306014
3.
Zoonoses ; 1(13), 2021.
Article in English | CAB Abstracts | ID: covidwho-2025746

ABSTRACT

As the novel coronavirus SARS-CoV-2 spread around the world, multiple waves of variants emerged, thus leading to local or global population shifts during the pandemic. A new variant named Omicron (PANGO lineage B.1.1.529), which was first discovered in southern Africa, has recently been proposed by the World Health Organization to be a Variant of Concern. This variant carries an unusually large number of mutations, particularly on the spike protein and receptor binding domain, in contrast to other known major variants. Some mutation sites are associated with enhanced viral transmission, infectivity, and pathogenicity, thus enabling the virus to evade the immune protective barrier. Given that the emergence of the Omicron variant was accompanied by a sharp increase in infection cases in South Africa, the variant has the potential to trigger a new global epidemic peak. Therefore, continual attention and a rapid response are required to decrease the possible risks to public health.

4.
Innovation (Camb) ; 3(2): 100221, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1713028

ABSTRACT

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.

5.
Nat Commun ; 12(1): 5654, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440471

ABSTRACT

There is an urgent need for animal models to study SARS-CoV-2 pathogenicity. Here, we generate and characterize a novel mouse-adapted SARS-CoV-2 strain, MASCp36, that causes severe respiratory symptoms, and mortality. Our model exhibits age- and gender-related mortality akin to severe COVID-19. Deep sequencing identified three amino acid substitutions, N501Y, Q493H, and K417N, at the receptor binding domain (RBD) of MASCp36, during in vivo passaging. All three RBD mutations significantly enhance binding affinity to its endogenous receptor, ACE2. Cryo-electron microscopy analysis of human ACE2 (hACE2), or mouse ACE2 (mACE2), in complex with the RBD of MASCp36, at 3.1 to 3.7 Å resolution, reveals the molecular basis for the receptor-binding switch. N501Y and Q493H enhance the binding affinity to hACE2, whereas triple mutations at N501Y/Q493H/K417N decrease affinity and reduce infectivity of MASCp36. Our study provides a platform for studying SARS-CoV-2 pathogenesis, and unveils the molecular mechanism for its rapid adaptation and evolution.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites/genetics , COVID-19/mortality , COVID-19/virology , Disease Models, Animal , Female , Humans , Male , Mice , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/genetics , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics
6.
Ann Transl Med ; 8(15): 941, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-782589

ABSTRACT

BACKGROUND: This study investigated the depression, anxiety, and insomnia levels of coronavirus disease 2019 (COVID-19) patients admitted to two mobile cabin hospitals in Jianghan District (Wuhan, China). METHODS: Thirty COVID-19 (eight mild type and twenty-two common type) patients were evaluated using the Patient Health Questionnaire-9, the Generalized Anxiety Disorder 7 Questionnaire, the Insomnia Severity Index, and a semi-structured interview. RESULTS: All 30 patients reported varying degrees of anxiety, depression, and insomnia. The levels of depression and anxiety in mild type COVID-19 patients were significantly lower than those in common type COVID-19 patients. Significant improvements in depression (P<0.001) and anxiety (P<0.001) levels were found in the COVID-19 patients at the second evaluation compared with the baseline (admittance to hospital). More than 80% patients agreed that medical security, support from other patients, and a better living environment were the main reasons for improvements to their adverse psychological states. CONCLUSIONS: Varying degrees of anxiety, depression, and insomnia frequently occur in patients with COVID-19. Standard treatment protocols and patient-centered care in the mobile cabin hospitals in this study provided the chance for COVID-19 patients to successfully improve their mental health during the outbreak of the pandemic.

7.
Nature ; 583(7815): 282-285, 2020 07.
Article in English | MEDLINE | ID: covidwho-17844

ABSTRACT

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Eutheria/virology , Evolution, Molecular , Genome, Viral/genetics , Sequence Homology, Nucleic Acid , Amino Acid Sequence , Animals , Betacoronavirus/chemistry , Betacoronavirus/classification , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Reservoirs/virology , Genomics , Humans , Malaysia , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Recombination, Genetic , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL